Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Discov Oncol ; 15(1): 153, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730061

RESUMO

Parthanatos, a cell death mechanism triggered by PARP-1 activation, is implicated in oncogenic processes, yet their role in low-grade gliomas (LGG) remains poorly understood. This research investigates Parthanatos-related miRNAs' prognostic and immunomodulatory potential, alongside their influence on therapeutic outcomes in LGGs. Comprehensive miRNA and mRNA profiles of LGG patients were extracted from TCGA and CGGA databases, integrating clinical parameters to identify Parthanatos-associated miRNAs. IHC data validated the expression levels of Parthanatos-related genes in glioma versus normal brain tissues. Protein-protein interaction networks and Spearman correlation analysis facilitated the identification of key miRNAs. Parthanatos-related miRNA indices (PMI) were screened using Lasso and assessed for their accuracy in predicting prognosis, comparing their associated potential molecular functions and heterogeneity of the immune microenvironment. Drug sensitivity was assessed between different groups and optimal therapeutic agents were predicted. Validate the expression levels of key miRNAs by qPCR. Ninety-one miRNAs significantly associated with Parthanatos were screened, through which a PMI prognosis model of nine miRNAs was constructed. The PMI score was able to independently predict the prognosis of patients with LGG, and the nomogram constructed based on the PMI provided a practical tool for clinical prediction of patient prognosis. The proportion of immune response was lower in patients in the high-risk group, and there were significant differences in drug sensitivity between different risk classes, while drugs such as Fasudil were identified as the most promising therapeutic agents for patients in the high-risk group. Our findings highlight the critical role of Parthanatos-associated miRNAs in the progression and treatment of LGG, offering novel insights into their prognostic value and therapeutic potential.

2.
Front Pharmacol ; 15: 1362301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38746012

RESUMO

Background and Objective: Oxidative stress is an important pathological process in ischemic stroke (IS). Apigenin (APG) is a natural product with favorable antioxidative effects, and some studies have already demonstrated the antioxidative mechanism of APG in the treatment of IS. However, the mechanism of APG on DNA damage and repair after IS is not clear. The aim of this study was to investigate the mechanism of APG on DNA repair after IS. Methods: Male Sprague-Dawley rats were used to establish a model of permanent middle cerebral artery occlusion (pMCAO) on one side, and were pre-treated with gavage of APG (30, 60, or 120 mg/kg) for 7 days. One day after pMCAO, the brain tissues were collected. Cerebral infarct volume, brain water content, HE staining and antioxidant index were analyzed to evaluated the brain damage. Molecular Docking, molecular dynamics (MD) simulation, immunohistochemistry, and Western blot were used to explore the potential proteins related to DNA damage repair. Results: APG has a low binding score with DNA repair-related proteins. APG treatment has improved the volume of cerebral infarction and neurological deficits, reduced brain edema, and decreased parthanatos and apoptosis by inhibiting PARP1/AIF pathway. In addition, APG improved the antioxidative capacity through reducing reactive oxygen species and malondialdehyde, and increasing glutathione and superoxide dismutase. Also, APG has reduced DNA damage- and cell death-related proteins such as PARP1, γH2A.X, 53BP1, AIF, cleaved caspase3, Cytochrome c, and increased DNA repair by BRCA1 and RAD51 through homologous recombination repair, and reduced non-homologous end link repair by KU70. Conclusion: APG can improve nerve damage after IS, and these protective effects were realized by reducing oxidative stress and DNA damage, and improving DNA repair.

3.
J Adv Res ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38704090

RESUMO

BACKGROUND: Central nervous system (CNS) injury causes severe organ damage due to both damage resulting from the injury and subsequent cell death. However, there are currently no effective treatments for countering the irreversible loss of cell function. Parthanatos is a poly (ADP-ribose) polymerase 1 (PARP-1)-dependent form of programmed cell death that is partly responsible for neural cell death. Consequently, the mechanism by which parthanatos promotes CNS injury has attracted significant scientific interest. AIM OF REVIEW: Our review aims to summarize the potential role of parthanatos in CNS injury and its molecular and pathophysiological mechanisms. Understanding the role of parthanatos and related molecules in CNS injury is crucial for developing effective treatment strategies and identifying important directions for future in-depth research. KEY SCIENTIFIC CONCEPTS OF REVIEW: Parthanatos (from Thanatos, the personification of death according to Greek mythology) is a type of programmed cell death that is initiated by the overactivation of PARP-1. This process triggers a cascade of reactions, including the accumulation of poly(ADP-ribose) (PAR), the nuclear translocation of apoptosis-inducing factor (AIF) after its release from mitochondria, and subsequent massive DNA fragmentation caused by migration inhibitory factor (MIF) forming a complex with AIF. Secondary molecular mechanisms, such as excitotoxicity and oxidative stress-induced overactivation of PARP-1, significantly exacerbate neuronal damage following initial mechanical injury to the CNS. Furthermore, parthanatos is not only associated with neuronal damage but also interacts with various other types of cell death. This review focuses on the latest research concerning the parthanatos cell death pathway, particularly considering its regulatory mechanisms and functions in CNS damage. We highlight the associations between parthanatos and different cell types involved in CNS damage and discuss potential therapeutic agents targeting the parthanatos pathway.

4.
Free Radic Biol Med ; 220: 222-235, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735540

RESUMO

Studies have highlighted oxidative damage in the inner ear as a critical pathological basis for sensorineural hearing loss, especially the presbycusis. Poly(ADP-ribose) polymerase-1 (PARP1) activation responds to oxidative stress-induced DNA damage with pro-repair and pro-death effects resembling two sides of the same coin. PARP1-related cell death, known as parthanatos, whose underlying mechanisms are attractive research hotspots but remain to be clarified. In this study, we observed that aged rats showed stria vascularis degeneration and oxidative damage, and PARP1-dependent cell death was prominent in age-related cochlear disorganization and dysfunction. Based on oxidative stress model of primary cultured stria marginal cells (MCs), we revealed that upregulated PARP1 and PAR (Poly(ADP-ribose)) polymers are responsible for MCs oxidative death with high mitochondrial permeability transition pore (mPTP) opening and mitochondrial membrane potential (MMP) collapse, while inhibition of PARP1 ameliorated the adverse outcomes. Importantly, the PARylation of apoptosis-inducing factor (AIF) is essential for its conformational change and translocation, which subsequently causes DNA break and cell death. Concretely, the interaction of PAR and truncated AIF (tAIF) is the mainstream in the parthanatos pathway. We also found that the effects of AIF cleavage and release were achieved through calpain activity and mPTP opening, both of which could be regulated by PARP1 via mediation of mitochondria Ca2+ concentration. In conclusion, the PAR-Ca2+-tAIF signaling pathway in parthanatos contributes to the oxidative stress damage observed in MCs. Targeting PAR-Ca2+-tAIF might be a potential therapeutic strategy for the early intervention of presbycusis and other oxidative stress-associated sensorineural deafness.

5.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167190, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38657912

RESUMO

Cervical cancer cells possess high levels of reactive oxygen species (ROS); thus, increasing oxidative stress above the toxicity threshold to induce cell death is a promising chemotherapeutic strategy. However, the underlying mechanisms of cell death are elusive, and efficacy and toxicity issues remain. Within DNA, 8-oxo-7,8-dihydroguanine (8-oxoG) is the most frequent base lesion repaired by 8-oxoguanine glycosylase 1 (OGG1)-initiated base excision repair. Cancer cells also express high levels of MutT homolog 1 (MTH1), which prevents DNA replication-induced incorporation of 8-oxoG into the genome by hydrolyzing 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP). Here, we revealed that ROS-inducing agents triggered cervical cancer to undergo parthanatos, which was mainly induced by massive DNA strand breaks resulting from overwhelming 8-oxoG excision by OGG1. Furthermore, the MTH1 inhibitor synergized with a relatively low dose of ROS-inducing agents by enhancing 8-oxoG loading in the DNA. In vivo, this drug combination suppressed the growth of tumor xenografts, and this inhibitory effect was significantly decreased in the absence of OGG1. Hence, the present study highlights the roles of base repair enzymes in cell death induction and suggests that the combination of lower doses of ROS-inducing agents with MTH1 inhibitors may be a more selective and safer strategy for cervical cancer chemotherapy.

6.
Eur J Pharmacol ; 972: 176557, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574839

RESUMO

Cerebral ischemia-reperfusion injury (CIRI) can induce massive death of ischemic penumbra neurons via oxygen burst, exacerbating brain damage. Parthanatos is a form of caspase-independent cell death involving excessive activation of PARP-1, closely associated with intense oxidative stress following CIRI. 4'-O-methylbavachalcone (MeBavaC), an isoprenylated chalcone component in Fructus Psoraleae, has potential neuroprotective effects. This study primarily investigates whether MeBavaC can act on SIRT3 to alleviate parthanatos of ischemic penumbra neurons induced by CIRI. MeBavaC was oral gavaged to the middle cerebral artery occlusion-reperfusion (MCAO/R) rats after occlusion. The effects of MeBavaC on cerebral injury were detected by the neurological deficit score and cerebral infarct volume. In vitro, PC-12 cells were subjected to oxygen and glucose deprivation/reoxygenation (OGD/R), and assessed cell viability and cell injury. Also, the levels of ROS, mitochondrial membrane potential (MMP), and intracellular Ca2+ levels were detected to reflect mitochondrial function. We conducted western blotting analyses of proteins involved in parthanatos and related signaling pathways. Finally, the exact mechanism between the neuroprotection of MeBavaC and parthanatos was explored. Our results indicate that MeBavaC reduces the cerebral infarct volume and neurological deficit scores in MCAO/R rats, and inhibits the decreased viability of PC-12 cells induced by OGD/R. MeBavaC also downregulates the expression of parthanatos-related death proteins PARP-1, PAR, and AIF. However, this inhibitory effect is weakened after the use of a SIRT3 inhibitor. In conclusion, the protective effect of MeBavaC against CIRI may be achieved by inhibiting parthanatos of ischemic penumbra neurons through the SIRT3-PARP-1 axis.


Assuntos
Chalconas , Fármacos Neuroprotetores , Parthanatos , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Sirtuínas , Animais , Ratos , Masculino , Chalconas/farmacologia , Chalconas/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/metabolismo , Parthanatos/efeitos dos fármacos , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/patologia , AVC Isquêmico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células PC12 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/metabolismo , Cálcio/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/complicações , Sobrevivência Celular/efeitos dos fármacos , Sirtuína 3/metabolismo , Sirtuína 3/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
7.
Aging (Albany NY) ; 16(6): 5471-5500, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499384

RESUMO

BACKGROUND: Parthanatos is a novel programmatic form of cell death based on DNA damage and PARP-1 dependency. Nevertheless, its specific role in the context of gastric cancer (GC) remains uncertain. METHODS: In this study, we integrated multi-omics algorithms to investigate the molecular characteristics of parthanatos in GC. A series of bioinformatics algorithms were utilized to explore clinical heterogeneity of GC and further predict the clinical outcomes. RESULTS: Firstly, we conducted a comprehensive analysis of the omics features of parthanatos in various human tumors, including genomic mutations, transcriptome expression, and prognostic relevance. We successfully identified 7 cell types within the GC microenvironment: myeloid cell, epithelial cell, T cell, stromal cell, proliferative cell, B cell, and NK cell. When compared to adjacent non-tumor tissues, single-cell sequencing results from GC tissues revealed elevated scores for the parthanatos pathway across multiple cell types. Spatial transcriptomics, for the first time, unveiled the spatial distribution characteristics of parthanatos signaling. GC patients with different parthanatos signals often exhibited distinct immune microenvironment and metabolic reprogramming features, leading to different clinical outcomes. The integration of parthanatos signaling and clinical indicators enabled the creation of novel survival curves that accurately assess patients' survival times and statuses. CONCLUSIONS: In this study, the molecular characteristics of parthanatos' unicellular and spatial transcriptomics in GC were revealed for the first time. Our model based on parthanatos signals can be used to distinguish individual heterogeneity and predict clinical outcomes in patients with GC.


Assuntos
Parthanatos , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Transcriptoma , Análise de Sequência de RNA , Algoritmos , Microambiente Tumoral/genética
8.
Biochem Biophys Res Commun ; 705: 149733, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38442446

RESUMO

Osteoarthritis (OA) is a common chronic inflammatory degenerative disease. Since chondrocytes are the only type of cells in cartilage, their survival is critical for maintaining cartilage morphology. This review offers a comprehensive analysis of how reactive oxygen species (ROS), including superoxide anions, hydrogen peroxide, hydroxyl radicals, nitric oxide, and their derivatives, affect cartilage homeostasis and trigger several novel modes of regulated cell death, including ferroptosis, parthanatos, and oxeiptosis, which may play roles in chondrocyte death and OA development. Moreover, we discuss potential therapeutic strategies to alleviate OA by scavenging ROS and provide new insight into the research and treatment of the role of regulated cell death in OA.


Assuntos
Ferroptose , Osteoartrite , Parthanatos , Humanos , Condrócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Osteoartrite/metabolismo
9.
Antioxidants (Basel) ; 13(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38539876

RESUMO

Calcium/calmodulin-dependent serine protein kinase (CASK) is a scaffold protein and plays critical roles in neuronal synaptic formation and brain development. Previously, CASK was shown to associate with EGFR to maintain the vulval cell differentiation in C. elegans. In this study, we explored the role of CASK in CHME3 microglial cells. We found that CASK silencing protects cells from H2O2-induced cell death by attenuating PARP-1 activation, mitochondrial membrane potential loss, reactive oxygen species production, and mitochondrial fission, but it increases oxidative phosphorylation. The PARP-1 inhibitor olaparib blocks H2O2-induced cell death, suggesting the death mode of parthanatos. CASK silencing also increases AKT activation but decreases AMPK activation under H2O2 treatment. Pharmacological data further indicate that both signaling changes contribute to cell protection. Different from the canonical parthanatos pathway, we did not observe the AIF translocation from mitochondria into the nucleus, suggesting a non-canonical AIF-independent parthanatos in H2O2-treated CHME3 cells. Moreover, we found that CASK silencing upregulates the EGFR gene and protein expression and increases H2O2-induced EGFR phosphorylation in CHME3 microglia. However, EGFR activation does not contribute to cell protection caused by CASK silencing. In conclusion, CASK plays a crucial role in microglial parthanatos upon H2O2 treatment via stimulation of PARP-1 and AMPK but the inhibition of AKT. These findings suggest that CASK might be an ideal therapeutic target for CNS disorders.

10.
Phytother Res ; 38(4): 1783-1798, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38323338

RESUMO

Macrophage inflammation plays a central role during the development and progression of sepsis, while the regulation of macrophages by parthanatos has been recently identified as a novel strategy for anti-inflammatory therapies. This study was designed to investigate the therapeutic potential and mechanism of pimpinellin against LPS-induced sepsis. PARP1 and PAR activation were detected by western blot or immunohistochemistry. Cell death was assessed by flow cytometry and western blot. Cell metabolism was measured with a Seahorse XFe24 extracellular flux analyzer. C57, PARP1 knockout, and PARP1 conditional knock-in mice were used in a model of sepsis caused by LPS to assess the effect of pimpinellin. Here, we found that pimpinellin can specifically inhibit LPS-induced macrophage PARP1 and PAR activation. In vitro studies showed that pimpinellin could inhibit the expression of inflammatory cytokines and signal pathway activation in macrophages by inhibiting overexpression of PARP1. In addition, pimpinellin increased the survival rate of LPS-treated mice, thereby preventing LPS-induced sepsis. Further research confirmed that LPS-induced sepsis in PARP1 overexpressing mice was attenuated by pimpinellin, and PARP1 knockdown abolished the protective effect of pimpinellin against LPS-induced sepsis. Further study found that pimpinellin can promote ubiquitin-mediated degradation of PARP1 through RNF146. This is the first study to demonstrate that pimpinellin inhibits excessive inflammatory responses by promoting the ubiquitin-mediated degradation of PARP1.


Assuntos
Lipopolissacarídeos , Metoxaleno , Sepse , Animais , Camundongos , Inflamação/metabolismo , Macrófagos , Metoxaleno/análogos & derivados , Camundongos Endogâmicos C57BL , Sepse/induzido quimicamente , Sepse/tratamento farmacológico , Ubiquitinação , Ubiquitinas/metabolismo
11.
Antioxidants (Basel) ; 13(2)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38397799

RESUMO

Retinitis pigmentosa is a common cause of inherited blindness in adults, which in many cases is associated with an increase in the formation of reactive oxygen species (ROS) that induces DNA damage, triggering Poly-ADP-Ribose Polymerase 1 (PARP1) activation and leading to parthanatos-mediated cell death. Previous studies have shown that resveratrol (RSV) is a promising molecule that can mitigate PARP1 overactivity, but its low bioavailability is a limitation for medical use. This study examined the impact of a synthesized new acylated RSV prodrug, piceid octanoate (PIC-OCT), in the 661W cell line against H2O2 oxidative stress and in rd10 mice. PIC-OCT possesses a better ADME profile than RSV. In response to H2O2, 661W cells pretreated with PIC-OCT preserved cell viability in more than 38% of cells by significantly promoting SIRT1 nuclear translocation, preserving NAD+/NADH ratio, and suppressing intracellular ROS formation. These effects result from expressing antioxidant genes, maintaining mitochondrial function, reducing PARP1 nuclear expression, and preventing AIF nuclear translocation. In rd10 mice, PIC-OCT inhibited PAR-polymer formation, increased SIRT1 expression, significantly reduced TUNEL-positive cells in the retinal outer nuclear layer, preserved ERGs, and enhanced light chamber activity (all p values < 0.05). Our findings corroborate that PIC-OCT protects photoreceptors by modulating the SIRT1/PARP1 axis in models of retinal degeneration.

12.
Mov Disord ; 39(4): 644-650, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38396375

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative condition that pathognomonically involves the death of dopaminergic neurons in the substantia nigra pars compacta, resulting in a myriad of motor and non-motor symptoms. Given the insurmountable burden of this disease on the population and healthcare system, significant efforts have been put forth toward generating disease modifying therapies. This class of treatments characteristically alters disease course, as opposed to current strategies that focus on managing symptoms. Previous literature has implicated the cell death pathway known as parthanatos in PD progression. Inhibition of this pathway by targeting poly (ADP)-ribose polymerase 1 (PARP1) prevents neurodegeneration in a model of idiopathic PD. However, PARP1 has a vast repertoire of functions within the body, increasing the probability of side effects with the long-term treatment likely necessary for clinically significant neuroprotection. Recent work culminated in the development of a novel agent targeting the macrophage migration inhibitory factor (MIF) nuclease domain, also named parthanatos-associated apoptosis-inducing factor nuclease (PAAN). This nuclease activity specifically executes the terminal step in parthanatos. Parthanatos-associated apoptosis-inducing factor nuclease inhibitor-1 was neuroprotective in multiple preclinical mouse models of PD. This piece will focus on contextualizing this discovery, emphasizing its significance, and discussing its potential implications for parthanatos-directed treatment. © 2024 International Parkinson and Movement Disorder Society.


Assuntos
Neurônios Dopaminérgicos , Fatores Inibidores da Migração de Macrófagos , Doença de Parkinson , Humanos , Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/metabolismo , Animais , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Parthanatos/efeitos dos fármacos
13.
Proteomes ; 12(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38250814

RESUMO

Billions of cells die in us every hour, and our tissues do not shrink because there is a natural regulation where Cell Death (CD) is balanced with cell division. The process in which cells eliminate themselves in a controlled manner is called Programmed Cell Death (PCD). The PCD plays an important role during embryonic development, in maintaining homeostasis of the body's tissues, and in the elimination of damaged cells, under a wide range of physiological and developmental stimuli. A multitude of protein mediators of PCD have been identified and signals have been found to utilize common pathways elucidating the proteins involved. This narrative review focuses on caspase-dependent and caspase-independent PCD pathways. Included are studies of caspase-dependent PCD such as Anoikis, Catastrophe Mitotic, Pyroptosis, Emperitosis, Parthanatos and Cornification, and Caspase-Independent PCD as Wallerian Degeneration, Ferroptosis, Paraptosis, Entosis, Methuosis, and Extracellular Trap Abnormal Condition (ETosis), as well as neutrophil extracellular trap abnormal condition (NETosis) and Eosinophil Extracellular Trap Abnormal Condition (EETosis). Understanding PCD from those reported in this review could shed substantial light on the processes of biological homeostasis. In addition, identifying specific proteins involved in these processes is mandatory to identify molecular biomarkers, as well as therapeutic targets. This knowledge could provide the ability to modulate the PCD response and could lead to new therapeutic interventions in a wide range of diseases.

14.
Adv Sci (Weinh) ; 11(5): e2304123, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38088577

RESUMO

Stanniocalcin-1 (STC1) is upregulated by inflammation and modulates oxidative stress-induced cell death. Herein, the function of STC1 in colitis and stress-induced parthanatos, a newly identified type of programmed necrotic cell death dependent on the activation of poly-ADP ribose polymerase-1 (PARP1) is investigated. Results show that STC1 expression is markedly increased in the inflamed colonic mucosa of Crohn's disease (CD) patients and chemically-induced mice colitis models. Evaluation of parthanatos severity and pro-inflammatory cytokine expression shows that intestinal-specific Stc1 knockout (Stc1INT-KO ) mice are resistant to dextran sulfate sodium (DSS)-induced colitis and exhibit lower disease severity. STC1-overexpressing cells show an increased degree of parthanatos and proinflammatory cytokine expression, whereas STC1-knockout cells show a decreased degree of parthanatos. Co-immunoprecipitation, mass spectrometry, and proteomic analyses indicate that STC1 interacts with PARP1, which activates the JNK pathway via PARP1-JNK interactions. Moreover, inhibition of PARP1 and JNK alleviates parthanatos and inflammatory injuries triggered by STC1 overexpression. Finally, following restoration of Stc1 and Parp1 expression by adeno-associated viruses, and overexpression of Stc1 and Parp1 aggravated DSS-induced colitis in Stc1INT-KO mice. In conclusion, STC1 mediates oxidative stress-associated parthanatos and aggravates inflammation via the STC1-PARP1-JNK interactions and subsequent JNK pathway activation in CD pathogenesis.


Assuntos
Colite , Glicoproteínas , Proteômica , Animais , Humanos , Camundongos , Apoptose , Colite/metabolismo , Colite/patologia , Citocinas , Inflamação , Poli(ADP-Ribose) Polimerase-1
15.
Biotechnol J ; 19(1): e2300257, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38038229

RESUMO

Chinese hamster ovary (CHO) cells are widely used for production of biologics including therapeutic monoclonal antibodies. Cell death in CHO cells is a significant factor in biopharmaceutical production, impacting both product yield and quality. Apoptosis has previously been described as the major form of cell death occurring in CHO cells in bioreactors. However, these studies were undertaken when less was known about non-apoptotic cell death pathways. Here, we report the occurrence of non-apoptotic cell death in an industrial antibody-producing CHO cell line during fed-batch culture. Under standard conditions, crucial markers of apoptosis were not observed despite a decrease in viability towards the end of the culture; only by increasing stress within the system did we observe caspase activation indicative of apoptosis. In contrast, markers of parthanatos and ferroptosis were observed during standard fed-batch culture, indicating that these non-apoptotic cell death pathways contribute to viability loss under these conditions. These findings pave the way for targeting non-conventional cell death pathways to improve viability and biologic production in CHO cells.


Assuntos
Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Cricetinae , Animais , Cricetulus , Células CHO , Apoptose
16.
Med. intensiva (Madr., Ed. impr.) ; 47(12): 691-696, dic. 2023. tab, graf
Artigo em Inglês | IBECS | ID: ibc-228385

RESUMO

Objective: Parthanatos is a form of programmed cell death mediated by apoptosis-inducing factor (AIF). However, there are not data on parthanatos in septic patients. The objective of the current study was to explore whether parthanatos is associated with mortality of septic patients. Design: Observational and prospective study. Setting: Three Spanish Intensive Care Units during 2017. Patients: Patients with sepsis according to Sepsis-3 Consensus criteria. Interventions: Serum AIF concentrations were determined at moment of sepsis diagnosis. Main variable of interest: Mortality at 30 days. Results: There were included 195 septic patients, and non-surviving (n=72) had serum AIF levels (p<0.001), lactic acid (p<0.001) and APACHE-II (p<0.001) that surviving (n=123). Multiple logistic regression analysis showed that patients with serum AIF levels>55.6ng/mL had higher mortality risk (OR=3.290; 95% CI=1.551−6.979; p=0.002) controlling for age, SOFA and lactic acid. Conclusions: Parthanatos is associated with mortality of septic patients. (AU)


Objetivo: Parthanatos es un tipo de muerte celular programada mediada por el factor inductor de apoptosis (AIF). Sin embargo, no hay datos sobre Parthanatos en pacientes sépticos. Por ello, el objetivo de este estudio fue explorar si Parthanatos está asociado con la morlaidad de los pacientes sépticos. Diseño: Estudio observacional y prospective. Ámbito: Tres Unidades de Cuidados Intensivos españolas durante 2017. Pacientes: Pacientes con sepsis en base a los criterios del Consenso Sepsis-3. Intervenciones: Se determinaron las concentraciones séricas de AIF en el momento del diagnóstico de la sepsis. Variable de interés principal: Mortalidad a los 30 días. Resultados: Se incluyeron 195 pacientes sépticos, y los que fallecieron (n=72) presentaron mayores concentraciones séricas de AIF (p<0.001) y de ácido láctico (p<0.001), y mayor puntuación APACHE-II (p<0.001) que los pacientes supervivientes (n=123). El análisis de regresión logística múltiple mostró que los pacientes con concentraciones séricas de AIF>55.6ng/mL tuvieron mayor riesgo de fallecer (OR=3.290; 95% CI=1.551−6.979; p=0.002) controlando por edad, SOFA y ácido láctico. Conclusiones: Parthanatos está asociado con la mortalidad de pacientes sépticos. (AU)


Assuntos
Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Sepse/mortalidade , Estudos Prospectivos , Fator de Indução de Apoptose , Espanha , Choque Séptico/mortalidade
17.
Regen Ther ; 24: 592-601, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38034859

RESUMO

Introduction: Fuchs endothelial corneal dystrophy (FECD) is the leading cause of corneal blindness in developed countries. Corneal endothelial cells in FECD are susceptive to oxidative stress, leading to mitochondrial dysfunction and cell death. Oxidative stress causes many forms of cell death including parthanatos, which is characterized by translocation of apoptosis-inducing factor (AIF) to the nucleus with upregulation of poly (ADP-ribose) polymerase 1 (PARP-1) and poly (ADP-ribose) (PAR). Although cell death is an important aspect of FECD, previous reports have often analyzed immortalized cell lines, making the evaluation of cell death difficult. Therefore, we established a new in vitro FECD model to evaluate the pathophysiology of FECD. Methods: Corneal endothelial cells were derived from disease-specific induced pluripotent stem cells (iPSCs). Hydrogen peroxide (H2O2) was used as a source for oxidative stress to mimic the pathophysiology of FECD. We investigated the responses to oxidative stress and the involvement of parthanatos in FECD-corneal endothelial cells. Results: Cell death ratio and oxidative stress level were upregulated in FECD with H2O2 treatment compared with non-FECD control, indicating the vulnerability of oxidative stress in FECD. We also found that intracellular PAR, as well as PARP-1 and AIF in the nucleus were upregulated in FECD. Furthermore, PARP inhibition, but not pan-caspase inhibition, rescued cell death, DNA double-strand breaks, mitochondrial membrane potential depolarization and energy depletion, suggesting that cell death was mainly due to parthanatos. Conclusions: We report that parthanatos may be involved in the pathophysiology of FECD and targeting this cell death pathway may be a potential therapeutic approach for FECD.

18.
Neurobiol Dis ; 187: 106314, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37783233

RESUMO

Poly (ADP-ribose) polymerase-1 (PARP-1) is the most extensively studied member of the PARP superfamily, with its primary function being the facilitation of DNA damage repair processes. Parthanatos is a type of regulated cell death cascade initiated by PARP-1 hyperactivation, which involves multiple subroutines, including the accumulation of ADP-ribose polymers (PAR), binding of PAR and apoptosis-inducing factor (AIF), release of AIF from the mitochondria, the translocation of the AIF/macrophage migration inhibitory factor (MIF) complex, and massive MIF-mediated DNA fragmentation. Over the past few decades, the role of PARP-1 in central nervous system health and disease has received increasing attention. In this review, we discuss the biological functions of PARP-1 in neural cell proliferation and differentiation, memory formation, brain ageing, and epigenetic regulation. We then elaborate on the involvement of PARP-1 and PARP-1-dependant parthanatos in various neuropathological processes, such as oxidative stress, neuroinflammation, mitochondrial dysfunction, excitotoxicity, autophagy damage, and endoplasmic reticulum (ER) stress. Additional highlight contains PARP-1's implications in the initiation, progression, and therapeutic opportunities for different neurological illnesses, including neurodegenerative diseases, stroke, autism spectrum disorder (ASD), multiple sclerosis (MS), epilepsy, and neuropathic pain (NP). Finally, emerging insights into the repurposing of PARP inhibitors for the management of neurological diseases are provided. This review aims to summarize the exciting advancements in the critical role of PARP-1 in neurological disorders, which may open new avenues for therapeutic options targeting PARP-1 or parthanatos.


Assuntos
Transtorno do Espectro Autista , Doenças Neurodegenerativas , Parthanatos , Humanos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Ribose , Inibidores de Poli(ADP-Ribose) Polimerases , Epigênese Genética , Doenças Neurodegenerativas/patologia
19.
Ageing Res Rev ; 91: 102078, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37758006

RESUMO

Poly (ADP-ribose) polymerase 1 (PARP1) is a first responder that recognizes DNA damage and facilitates its repair. Neurodegenerative diseases, characterized by progressive neuron loss driven by various risk factors, including DNA damage, have increasingly shed light on the pivotal involvement of PARP1. During the early phases of neurodegenerative diseases, PARP1 experiences controlled activation to swiftly address mild DNA damage, thereby contributing to maintain brain homeostasis. However, in late stages, exacerbated PARP1 activation precipitated by severe DNA damage exacerbates the disease condition. Consequently, inhibition of PARP1 overactivation emerges as a promising therapeutic approach for neurodegenerative diseases. In this review, we comprehensively synthesize and explore the multifaceted role of PARP1 in neurodegenerative diseases, with a particular emphasis on its over-activation in the aggregation of misfolded proteins, dysfunction of the autophagy-lysosome pathway, mitochondrial dysfunction, neuroinflammation, and blood-brain barrier (BBB) injury. Additionally, we encapsulate the therapeutic applications and limitations intrinsic of PARP1 inhibitors, mainly including limited specificity, intricate pathway dynamics, constrained clinical translation, and the heterogeneity of patient cohorts. We also explore and discuss the potential synergistic implementation of these inhibitors alongside other agents targeting DNA damage cascades within neurodegenerative diseases. Simultaneously, we propose several recommendations for the utilization of PARP1 inhibitors within the realm of neurodegenerative disorders, encompassing factors like the disease-specific roles of PARP1, combinatorial therapeutic strategies, and personalized medical interventions. Lastly, the encompassing review presents a forward-looking perspective along with strategic recommendations that could guide future research endeavors in this field.


Assuntos
Doenças Neurodegenerativas , Ribose , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerase-1/metabolismo , Dano ao DNA , Reparo do DNA
20.
Eur J Pharmacol ; 956: 175980, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37567459

RESUMO

The use of cisplatin and its derivatives in cancer treatment triggered the interest in metal-containing complexes as potential novel anticancer agents. Palladium (II)-based complexes have been synthesized in recent years with promising antitumor activity. Previously, we described the synthesis and cytotoxicity of palladium (II) complexes containing halogen-substituted Schiff bases and 2-picolylamine. Here, we selected two palladium (II) complexes with double chlorine-substitution or double iodine-substitution that displayed the best cytotoxicity in drug-sensitive CCRF-CEM and multidrug-resistant CEM/ADR5000 leukemia cells for further biological investigation. Surprisingly, these compounds did not significantly induce apoptotic cell death. This study aims to reveal the major mode of cell death of these two palladium (II) complexes. We performed annexin V-FITC/PI staining and flow cytometric mitochondrial membrane potential measurement followed by western blotting, immunofluorescence microscopy, and alkaline single cell electrophoresis (comet assay). J4 and J6 still induced neither apoptosis nor necrosis in both leukemia cell lines. They also insufficiently induced autophagy as evidenced by Beclin and p62 detection in western blotting. Interestingly, J4 and J6 induced a novel mode of cell death (parthanatos) as mainly demonstrated in CCRF-CEM cells by hyper-activation of poly(ADP-ribose) polymerase 1 (PARP) and poly(ADP-ribose) (PAR) using western blotting, flow cytometric measurement of mitochondrial membrane potential collapse, nuclear translocation of apoptosis-inducing factor (AIF) by immunofluorescence microscopy, and DNA damage by alkaline single cell electrophoresis (comet assay). AIF translocation was also observed in CEM/ADR5000 cells. Thus, parthanatos was the predominant mode of cell death induced by J4 and J6, which explains the high cytotoxicity in CCRF-CEM and CEM/ADR5000 cells. J4 and J6 may be interesting drug candidates and deserve further investigations to overcome resistance of tumors against apoptosis. This study will promote the design of further novel palladium (II)-based complexes as chemotherapeutic agents.


Assuntos
Antineoplásicos Fitogênicos , Leucemia , Parthanatos , Humanos , Paládio/farmacologia , Halogênios/farmacologia , Bases de Schiff/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Resistência a Múltiplos Medicamentos , Antineoplásicos Fitogênicos/farmacologia , Morte Celular , Apoptose , Leucemia/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...